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Quantum Space-Time and Tetrads

Holger Lyre1
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The description of space-time in a quantum-theore tic framework must be
considered as a fundamental problem in physics. Most attempts start with an
already given classical space-time, then the quantization is done. In contrast to
this, the central assumption in this paper is not to start with space-time, but to
derive it from some more abstract presuppositions as done in Von WeizsaÈ cker’ s
quantum theory of ur-alternatives. Mathematically, the transition from a manifold
with spin structure to a manifold with four real space-time coordinates has to be
considered. The suggestion is made that this transition can be well described by
using a tetradial formalism which appears to be the most natural connection
between ur-spinors and real four-vectors.

1. INTRODUCTION

This paper is a speculative one; it deals with some perspectives in

describing space-time from a more fundamental point of view: from an

underlying ª worldº of spinors. Our starting point is the so-called quantum
theory of ur-alternatives which is based on the physical and philosophical

considerations of Von WeizsaÈ cker (1985). The idea is that the primary substra-

tum in the world is given by urs: the simplest objects in quantum theory.

Conceptually they represent nothing further than one bit of potential informa-
tion (Lyre, 1995). Thus, they could be called quantum bits (in modern quantum
information theory sometimes called ª qubitsº ). It is mathematically trivial

that each physical object in quantum theory may be embedded in a tensor

product of urs. Let us consider the essential symmetry group of urs, which is

U (2) 5 SU(2) ^ U (1) , S3 3 S ’ (1)

In ur-theory the central assumption is that the group-manifold S3 3 R+, which

is associated to the universal symmetry group of urs U (2), has to be looked

1 Institute of Philosophy, Ruhr-University Bochum. D-44780 Bochum, Germany; e-mail:
holger.lyre@rz.ruhr-uni-bochum .de.

393

0020-7748/98/0100-039 3$15.00/0 q 1998 Plenum Publishing Corporation



394 Lyre

upon as a model of our global cosmic space and time (we take R+ instead

of S1 to describe time because of our philosophical motivation: we have to

presuppose the difference between past and future which is essential in
empirical science).

What is the argument for that astonishing assumption? As far as any

empirical object is build up from urs, the symmetry properties of urs have

to be the symmetry properties of any empirical objects, but the latter are

essentially the space-time symmetry properties. Thus, space and time are not

just given as a universal background in physics, but reflect the fundamental
structure of ur-spinors. A familiar assumption on deriving space-time from

spinors had been given by Penrose (1984) in his twistor theory. Finkelstein

(1994) gave a suggestive name to these kinds of programs: ª spinorism.º

To summarize our starting point:

Basic Assumption. Ur-spinors are to be considered as the fundamental

physical entities. The quantum theory of urs leads to the universal symme-
try group

U (2) 5 SU(2) ^ U (1)

Since physical objects are built up from urs, the symmetry group of urs

(conceived as a homogeneous space of the group itself) gives a model of

global space-time

S3 3 S1 ® S3 3 R 1

Conclusion 1. The three-dimensionality of position space and the one-
dimensionality of time are derived. The first approximation of global position-

space, i.e., the cosmic model S3, is characterized as a maximal symmetric

space which allows a Killing group with six parameters which is given by

SO(4). The curvature of our cosmos is k 5 1. In the static case this is an

Einstein cosmos.

2. UR-THEORY IN THE GLOBAL EINSTEIN COSMOS

2.1. Ur-Spinors

According to Conclusion 1, urs are to be considered as nonlocalized

functions in the global Einstein cosmos S3. We choose a special parametriza-

tion to represent them. A general element of U (2) can be written as

A 5 Uei w 5 1 a b

2 b* a* 2 e i w , a, b P C, w P R (2)
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From the unitarity condition

A 1 A 5 U 1 U 5 12 3 2 (3)

we have

det U 5 a*a 1 b*b 5 1 (4)

With a 5 w 1 iz and b 5 y 1 ix this is equivalent to

w 2 1 x2 1 y2 1 z 2 5 1 (5)

i.e., a representation of S3. Thus, urs are nonlocalized functions on this group
manifold. For example, the two columns of (2) represent the ur-spinors u A

and v A with components

u 1 5 a, u 2 5 2 b*, u 1 5 b, v 2 5 a* (6)

In spinor space we use the metric

( e AB) 5 ( e AB) 5 1 0 1

2 1 0 2 (7)

which acts like

uA 5 e ABuB, u A 5 e BAuB 5 uB e BA (8)

and therefore the covariant components of (6) are

u1 5 u2 5 2 b*, u2 5 2 u1 5 2 a,

u1 5 v2 5 a*, u2 2 v1 5 2 b (9)

Hence the ur-spinors are orthogonal,

uAuA 5 uAuA 5 0 (10)

and fulfill the conditions

uAuA 5 2 uAuA 5 1 (11)

Thus, the ur-spinorial system represents a dyad.

2.2. Ur-Tetrads

The main motivation of ur-theory is the foundation of space-time struc-

ture from the symmetry of urs. Therefore, we have to look for an appropriate
mathematical tool to express this. Because of the equivalence of a spinorial

dyad to a tensorial tetrad, such a tool is properly given by the tetradial

formalism. A tetrad (vierbein) must be looked upon as a spatial reference

frame which is represented by a system of four linear independent 4-vectors
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t ( a )
m numbered by the index put in brackets. The metric tensor of space-time

is given by

q m n 5 g( a )( b )t
( a )
m t( b )

n (12)

whereas g( a )( b ) obeys the condition

g( a )( b )g
( b )( g ) 5 g ( g )

( a ) 5 d ( g )
( a ) (13)

and defines the lower tetradial indices

t( a ) m 5 g( a )( b )t
( b )
m (14)

A special tetrad is given by using null vectors, i.e., t ( a )
m t m ( a ) 5 0. It turns

out that the relations (10) and (11) are suitable to define four lightlike 4-

vectors in the following way:

l m 5
1

! 2
s m

ABv AÇ uB, m m 5
1

! 2
s m

ABv AÇ vB (15)

l * m 5
1

! 2
s m

ABu AÇ vB, n m 5
1

! 2
s m

ABu AÇ uB

whereas the dotted indices denote the complex conjugate spinor components

and s m are the Pauli-matrices. The vectors (15) fullfil the conditions

l m l* m 5 1, m m n m 5 2 1, 0 else (16)

Thus, from the spinorial dyad (11) a null tetrad

t ( a )
m 5 (l m , l *m , m m , n m ) (17)

can be gained such that the Minkowskian metric h m n 5 diag ( 2 1, 1, 1, 1)

turns out to be

h m n 5 l m l*n 1 l*m l n 2 m m n n 2 n m m n (18)

with

g( a )( b ) 5 1
0 1

1 0

0 2 1

2 1 0 2 (19)

With (6) we additionally find

m0 5 n0 5 1, mk 5 2 nk (20)

The relations (15), (17), and (18) are based on SL (2, C) as the invariance
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group of ur-spinors, whereas (20) is a consequence of the SU (2) representation

according to (2), (6).

Conclusion 2. The ur-spinorial dyad (11) is in a natural way associated

with a null-tetradial reference frame (15), (17). Relation (18) can be under-

stood as the derivation of the pseudo-Euclidean structure of space-time from
ur-tetrads.

GoÈ rnitz (1988) pointed out that the ur-theoretic cosmos S3 is

expanding with

R (T ) 5 R (0) 1 c ? T (21)

where R is the curvature radius of S3, T is the cosmic epoch, and c is

presumably the velocity of light. Thus, ur-theory leads to a Friedmann±

Robertson±Walker cosmos with (21) in agreement with the Einstein equations.

Conclusion 3. From the ur-spinorial invariance group SL(2, C) , SO(1,

3) and from the postulate of a universal limiting velocity c we can derive

the full special relativity theory from the quantum theory of urs.

Because the vectors (15) are complex, we choose real linear combinations

(compare Penrose and Rindler, 1984, Vol. II, p. 120). They are explicitly
given by

t m 5
1

! 2
(m m 1 n m ) 5 1

1

0

0

0 2 (22)

z m 5
1

! 2
(m m 2 n m ) 5 1

0

ab 1 a*b*

i(ab 2 a*b*)

bb* 2 aa* 2 5 1
0

2(wy 2 xz)

2 1(wx 1 yz)

x 2 1 y2 2 w2 2 z 2 2 (23)

x m 5
1

! 2
(l m 1 l * m ) 5

1

2 1
0

a 2 2 b2 1 a*2 2 b*2

i(a 2 2 b2 2 a*2 1 b *2)

2(ab* 1 a*b) 2
5 1

0

x 2 2 y2 1 w2 2 z 2

2(xy 2 wz)

2(wy 1 xz) 2 (24)
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y m 5
i

! 2
(l m 2 l * m ) 5

1

2 1
0

i (a 2 1 b2 2 a*2 2 b *2)

2 a 2 2 b2 2 a*2 2 b *2

2i (ab* 2 a*b) 2
5 1

0

2 2(xy 1 wz)

x 2 2 y2 2 w2 1 z 2

2(wx 2 yz) 2 (25)

The system (22)±(25) is not a null tetrad. The dreibein frame (x, y, z)

is a tangent space at the point (w, x, y, z) 5 (1, 0, 0, 0) of S3 according to

(5) such that (2) becomes the identity matrix 12 3 2. The dreibein (23)±(25)

must be SO(4)-rotated in order to get a tangent space at each point of S3.

2.3. The Quantized Ur-Tetrad

Up to this point we have used urs as spinorial wavefunctions, i.e., we
considered an ur as the first step of quantization of a simple alternative. The

second quantization is done by the replacement ur ® aÃr and u *r ® aÃ1r and

the Bose commutation relations

[aÃr, a 1
s ] 5 d rs, [aÃr, aÃs] 5 [aÃ1

r , a 1
s ] 5 0 (26)

Thus, we get a quantum field theory of urs, i.e., a many-ur theory with a

variable number of urs. Consequently, from (26) the quantization of the ur-
tetrad (22)±(25) follows. We use a special choise of the components of the

bispinorial ur (u
u*), i.e., ur with r 5 1, ... , 4 (u* denotes an anti-ur), which

belongs to a representation of SL (2, C) % SL* (2, C)

u1 5 aei w , u2 5 2 b*ci w , u3 5 bei w , u4 5 a*ei w (27)

u *1 5 a*e 2 i w , u *2 5 2 be 2 i w , u *3 5 b*e 2 i w , u *4 5 ae 2 i w

With the abbreviations

t Ãrs 5
1

2
{aÃ1r , aÃs}, uÃr 5 t Ãrr, nÃ5 o

r
nÃr (28)

we get
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tÃm 5 1
nÃ

0

0

0 2 , z m 5
1

2 1
0

2 t Ã12 2 t Ã21 1 t Ã34 1 t Ã43

i ( t Ã12 2 t Ã21 2 t Ã34 1 t Ã43)

2 nÃ1 1 nÃ2 1 nÃ3 2 nÃ4 2
x m 5

1

2 1
0

t Ã14 1 t Ã41 1 t Ã23 1 t Ã32

i ( 2 t Ã14 1 t Ã41 2 t Ã32 1 t Ã23)

t Ã13 1 t Ã31 2 t Ã24 2 t Ã42 2 , (29)

yÃm 5
1

2 1
0

i ( 2 t Ã14 1 t Ã41 2 t Ã23 1 t Ã32)

2 t Ã14 2 t Ã41 1 t Ã23 1 t Ã32

i ( 2 t Ã13 1 t Ã31 1 t Ã24 2 t Ã42) 2
Of course, this is just a first very simple version of the quantization of

the global space-time model in terms of a tetradial system of ur-operators.

In the language of quantum gravity t ( a )
m represent four vector bosons, i.e.,

massless ª gravitonsº with spin 1. It seems that the quantization of urs leads

consequently to a quantization of the ur-tetradial reference frame, i.e., global

space-time.

3. OUTLOOK

What can we learn from the quantization of the ur-tetrad about the

fundamental question of whether space has to be treated as a continuum?
We first look at t m in (29). The cosmic time (the epoch) is correlated with

the total number of urs, i.e., the increase of the number of urs has to be

understood as an expression of time. Consequently, at a certain epoch there

will be only a finite number of urs in the world. This number can be estimated

at about 10120. Von WeizsaÈ cker (1985, p. 471) calls this open finitism. If we

keep the curvature radius R of S3 according to (21) constant, we find that
with passing time there are more and more alternatives available to divide

R into smaller and smaller intervalls. Equivalently, we could say that the unit

sticks we use to measure spatial lengths decrease. But from open finitism,

it follows that the procedure of division, i.e., ª countingº of ur-alternatives,

takes time, and thus space is ª continuousº (i.e., infinite) only in a poten-
tial sense.

One hope could be that the proposed tetradial formalism is perhaps a

way to deal with general relativity theory in an ur-theoretic manner. But we

meet with a hard problem at this point: if we take seriously the concept of

a space-time manifold which ª existsº only in a potential sense, what, then,
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is the suitable mathematical description for it? Could it be the tetradial

formalism? These questions have to be studied further.
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